Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(91): 13587-13590, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37886844

RESUMO

Fungal tetraketide pyrones possess important and potent bioactivities, but their detailed biosynthetic pathways are unknown and synthetic routes to their production are lengthy. Here we investigated the fungal pathways to the multiforisins and compounds related to islandic acid. Heterologous expression experiments yield high titres of these compounds and pathway intermediates. The results both elucidate the pathway and offer a platform for the total biosynthesis of this class of metabolites.


Assuntos
Vias Biossintéticas , Pironas , Pironas/metabolismo
2.
Metab Eng ; 80: 216-231, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37863177

RESUMO

Transcriptomic studies have revealed that fungal pathogens of plants activate the expression of numerous biosynthetic gene clusters (BGC) exclusively when in presence of a living host plant. The identification and structural elucidation of the corresponding secondary metabolites remain challenging. The aim was to develop a polycistronic system for heterologous expression of fungal BGCs in Saccharomyces cerevisiae. Here we adapted a polycistronic vector for efficient, seamless and cost-effective cloning of biosynthetic genes using in vivo assembly (also called transformation-assisted recombination) directly in Escherichia coli followed by heterologous expression in S. cerevisiae. Two vectors were generated with different auto-inducible yeast promoters and selection markers. The effectiveness of these vectors was validated with fluorescent proteins. As a proof-of-principle, we applied our approach to the Colletochlorin family of molecules. These polyketide secondary metabolites were known from the phytopathogenic fungus Colletotrichum higginsianum but had never been linked to their biosynthetic genes. Considering the requirement for a halogenase, and by applying comparative genomics, we identified a BGC putatively involved in the biosynthesis of Colletochlorins in C. higginsianum. Following the expression of those genes in S. cerevisiae, we could identify the presence of the precursor Orsellinic acid, Colletochlorins and their non-chlorinated counterparts, the Colletorins. In conclusion, the polycistronic vectors described herein were adapted for the host S. cerevisiae and allowed to link the Colletochlorin compound family to their corresponding biosynthetic genes. This system will now enable the production and purification of infection-specific secondary metabolites of fungal phytopathogens. More widely, this system could be applied to any fungal BGC of interest.


Assuntos
Família Multigênica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regiões Promotoras Genéticas , Família Multigênica/genética
3.
Mar Drugs ; 20(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36286460

RESUMO

A chemical study of the CH2Cl2-MeOH (1:1) extract from the sponge Ernsta naturalis collected in Rodrigues (Mauritius) based on a molecular networking dereplication strategy highlighted one novel aminopyrimidone alkaloid compound, ernstine A (1), seven new aminoimidazole alkaloid compounds, phorbatopsins D-E (2, 3), calcaridine C (4), naamines H-I (5, 7), naamidines J-K (6, 8), along with the known thymidine (9). Their structures were established by spectroscopic analysis (1D and 2D NMR spectra and HRESIMS data). To improve the investigation of this unstudied calcareous marine sponge, a metabolomic study by molecular networking was conducted. The isolated molecules are distributed in two clusters of interest. Naamine and naamidine derivatives are grouped together with ernstine in the first cluster of twenty-three molecules. Phorbatopsin derivatives and calcaridine C are grouped together in a cluster of twenty-one molecules. Interpretation of the MS/MS spectra of other compounds of these clusters with structural features close to the isolated ones allowed us to propose a structural hypothesis for 16 compounds, 5 known and 11 potentially new.


Assuntos
Alcaloides , Poríferos , Animais , Espectrometria de Massas em Tandem , Estrutura Molecular , Poríferos/química , Alcaloides/química , Timidina
4.
Nat Prod Res ; 36(6): 1668-1671, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33706628

RESUMO

Three known compounds were isolated from Virgaria nigra CF-231658; 2,7-dihydroxy naphthalene (1), virgaricin B (2) and virgaricin (3). The isolated compounds was obtained from liquid-state and agar-supported fermentation using Amberlite XAD-16 solid-phase extraction during the cultivation step. Their structures were elucidated on the basis of 1D and 2D NMR as well as HRMS spectroscopic analyses. The isolated compounds were examined for their ability to inhibit elastase using normal human diploid fibroblasts. Compound 2 displayed the most potent activity with 76.7 ± 2.12% inhibition of the enzyme activity at 5 µM concentration.


Assuntos
Ascomicetos , Ascomicetos/química , Fermentação , Humanos , Lactamas/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Elastase Pancreática/antagonistas & inibidores
5.
Mar Drugs ; 19(7)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206861

RESUMO

Solid-phase extraction embedded dialysis (SPEED technology) is an innovative procedure developed to physically separate in-situ, during the cultivation, the mycelium of filament forming microorganisms, such as actinomycetes and fungi, and the XAD-16 resin used to trap the secreted specialized metabolites. SPEED consists of an external nylon cloth and an internal dialysis tube containing the XAD resin. The dialysis barrier selects the molecular weight of the trapped compounds, and prevents the aggregation of biomass or macromolecules on the XAD beads. The external nylon promotes the formation of a microbial biofilm, making SPEED a biofilm supported cultivation process. SPEED technology was applied to the marine Streptomyces albidoflavus 19-S21, isolated from a core of a submerged Kopara sampled at 20 m from the border of a saltwater pond. The chemical space of this strain was investigated effectively using a dereplication strategy based on molecular networking and in-depth chemical analysis. The results highlight the impact of culture support on the molecular profile of Streptomyces albidoflavus 19-S21 secondary metabolites.


Assuntos
Actinobacteria/metabolismo , Fungos/metabolismo , Streptomyces/metabolismo , Animais , Biofilmes , Extração em Fase Sólida
6.
Mult Scler Relat Disord ; 51: 102918, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33838521

RESUMO

BACKGROUND: Discontinuing fingolimod (FTY) in older patients is a growing concern with little evidence supporting the decision to pursue treatment and reasonable doubt for disease reactivation after withdrawal. OBJECTIVE: To estimate the incidence of recurrence of disease activity (RDA) and rebound after FTY withdrawal in patients older than 50 years. METHODS: Retrospective analysis of all MS patients in our clinic who discontinued FTY after at least 6 months of treatment, according to disease activity on FTY and age at discontinuation. RDA was defined as the occurrence of either clinical and/or MRI activity in the 6 months after FTY withdrawal and rebound when the levels of disease activity surpassed pretreatment activity. RESULTS: From the 128 patients who discontinued FTY since 2011, up to 35.2% of patients experienced evidence of disease activity and 12.5% had a rebound. The incidence of both RDA and rebound was not different among individuals who had persistent disease activity on FTY to those who stopped FTY for other reasons than inefficacy (RDA: 25.5% vs 20.5%, p = 0.353 rebound: 14.5% vs 11%, p = 0.596). Negative predictive factors for RDA were younger age at disease onset (p = 0.036), highly active disease at baseline (p = 0.003) and previous treatment with NTZ (p = 0.013). Older age at FTY discontinuation did not reduce the risk of RDA in patients previously stable on treatment (OR 0.972, 95% CI 0.871-1.085, p = 0.613), although the incidence of RDA/rebound was half less in the older patients (36.5% in the <50 vs 19% in the ≥50 year-old, p = 0.174) and none of the patients over 60 experienced RDA. CONCLUSION: Although there is a tendency for a lower risk of disease reactivation in the older patients, the incidence of RDA, and even rebound, is not negligible between the age of 50 and 60 years, even in patients with previously stable MS on FTY.


Assuntos
Cloridrato de Fingolimode , Esclerose Múltipla Recidivante-Remitente , Idoso , Cloridrato de Fingolimode/efeitos adversos , Humanos , Imunossupressores/efeitos adversos , Pessoa de Meia-Idade , Recidiva , Estudos Retrospectivos
7.
Curr Issues Mol Biol ; 44(1): 14-30, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35723381

RESUMO

Cells have developed a highly integrated system responsible for proteome stability, namely the proteostasis network (PN). As loss of proteostasis is a hallmark of aging and age-related diseases, the activation of PN modules can likely extend healthspan. Here, we present data on the bioactivity of an extract (SA223-S2BM) purified from the strain Salinispora arenicola TM223-S2 that was isolated from the soft coral Scleronephthya lewinsohni; this coral was collected at a depth of 65 m from the mesophotic Red Sea ecosystem EAPC (south Eilat, Israel). Treatment of human cells with SA223-S2BM activated proteostatic modules, decreased oxidative load, and conferred protection against oxidative and genotoxic stress. Furthermore, SA223-S2BM enhanced proteasome and lysosomal-cathepsins activities in Drosophila flies and exhibited skin protective effects as evidenced by effective inhibition of the skin aging-related enzymes, elastase and tyrosinase. We suggest that the SA223-S2BM extract constitutes a likely promising source for prioritizing molecules with anti-aging properties.

8.
Microorganisms ; 8(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825344

RESUMO

Aging research aims at developing therapies that delay normal aging processes and some related pathologies. Recently, many compounds and extracts from natural products have been shown to slow aging and/or extend lifespan. Marine sponges and their associated microorganisms have been found to produce a wide variety of bioactive secondary metabolites; however, those from the Southwest of the Indian Ocean are much less studied, especially regarding anti-aging activities. In this study, the microbial diversity of the marine sponge Scopalina hapalia was investigated by metagenomic analysis. Twenty-six bacterial and two archaeal phyla were recovered from the sponge, of which the Proteobacteria phylum was the most abundant. In addition, 30 isolates from S. hapalia were selected and cultivated for identification and secondary metabolites production. The selected isolates were affiliated to the genera Bacillus, Micromonospora, Rhodoccocus, Salinispora, Aspergillus, Chaetomium, Nigrospora and unidentified genera related to the family Thermoactinomycetaceae. Crude extracts from selected microbial cultures were found to be active against seven clinically relevant targets (elastase, tyrosinase, catalase, sirtuin 1, Cyclin-dependent kinase 7 (CDK7), Fyn kinase and proteasome). These results highlight the potential of microorganisms associated with a marine sponge from Mayotte to produce anti-aging compounds. Future work will focus on the isolation and the characterization of bioactive compounds.

9.
Mar Drugs ; 18(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635268

RESUMO

Chemical study of the CH2Cl2-MeOH (1:1) extract from the sponge Haliclona sp. collected in Mayotte highlighted three new long-chain highly oxygenated polyacetylenes, osirisynes G-I (1-3) together with the known osirisynes A (4), B (5), and E (6). Their structures were elucidated by 1D and 2D NMR spectra and HRESIMS and MS/MS data. All compounds were evaluated on catalase and sirtuin 1 activation and on CDK7, proteasome, Fyn kinase, tyrosinase, and elastase inhibition. Five compounds (1; 3-6) inhibited proteasome kinase and two compounds (5-6) inhibited CDK7 and Fyn kinase. Osirisyne B (5) was the most active compound with IC50 on FYNB kinase, CDK7 kinase, and proteasome inhibition of 18.44 µM, 9.13 µM, and 0.26 µM, respectively.


Assuntos
Haliclona , Polímero Poliacetilênico/química , Inibidores de Proteassoma/química , Animais , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Polímero Poliacetilênico/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
10.
Int J Mol Sci ; 21(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392868

RESUMO

2,4-Dichlorophenol (2,4-DCP) is a ubiquitous environmental pollutant categorized as a priority pollutant by the United States (US) Environmental Protection Agency, posing adverse health effects on humans and wildlife. Bioremediation is proposed as an eco-friendly, cost-effective alternative to traditional physicochemical remediation techniques. In the present study, fungal strains were isolated from marine invertebrates and tested for their ability to biotransform 2,4-DCP at a concentration of 1 mM. The most competent strains were studied further for the expression of catechol dioxygenase activities and the produced metabolites. One strain, identified as Tritirachium sp., expressed high levels of extracellular catechol 1,2-dioxygenase activity. The same strain also produced a dechlorinated cleavage product of the starting compound, indicating the assimilation of the xenobiotic by the fungus. This work also enriches the knowledge about the mechanisms employed by marine-derived fungi in order to defend themselves against chlorinated xenobiotics.


Assuntos
Basidiomycota/fisiologia , Clorofenóis/metabolismo , Invertebrados/microbiologia , Animais , Organismos Aquáticos/microbiologia , Basidiomycota/enzimologia , Basidiomycota/isolamento & purificação , Biodegradação Ambiental , Catecol 1,2-Dioxigenase/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Simbiose , Poluentes Químicos da Água/metabolismo
11.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32354980

RESUMO

We report the 28-Mbp draft genome sequence of the marine fungus Cladosporium sp. strain TM138. The species was isolated from the marine invertebrate Didemnum maculosum Its genome sequence will inform future investigations into the species' enzymatic potential for bioremediation and its evolution in marine environments.

12.
Toxicol In Vitro ; 66: 104869, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32320759

RESUMO

Nowadays, there is a huge interest in natural products obtained from marine organisms that can promote human health.The aim of the present study is to evaluate for the first time, the in vitro effects of marine Aspergillus puulaauensis TM124-S4 extract against oxidative stress in human fibroblasts, and its potential as a cosmetic ingredient. The strain was isolated from the Mediterranean Sea star, Echinaster sepositus, and identified according to ITS molecular sequence homology as a member of Aspergillus section versicolores.To gain insight on the bioactivity underpinning the effects of TM124-S4 extract on oxidative stress, we examined a panel of a hundred genes as well as cell viability. Initially, Aspergillus puulaauensis TM124-S4 promoted cell viability.The change in gene transcripts revealed that Aspergillus puulaauensis TM124-S4 extracts exhibited skin protection properties by mediating cell proliferation (EPS8, GDF15, CASP7, VEGFA), antioxidant response (CAT, SOD1, TXN, GPX1), skin hydration (CD44, CRABP2, SERPINE) and DNA repair (PCNA, P21). The extract also modulated the expression of genes involved in skin pigmentation and aging (TYR, FOXO3).These findings indicate that Aspergillus puulaauensis TM124-S4 extract possesses significant in-vitro skin protection activity against induced oxidative stress.Furthermore, new insights are provided into the beneficial role of fungal bioactive compounds in skin related research.


Assuntos
Antioxidantes/farmacologia , Aspergillus , Misturas Complexas/farmacologia , Fibroblastos/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Estresse Oxidativo/efeitos dos fármacos
13.
J Exp Bot ; 71(10): 2910-2921, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32006004

RESUMO

Infection of Arabidopsis thaliana by the ascomycete fungus Colletotrichum higginsianum is characterized by an early symptomless biotrophic phase followed by a destructive necrotrophic phase. The fungal genome contains 77 secondary metabolism-related biosynthetic gene clusters, whose expression during the infection process is tightly regulated. Deleting CclA, a chromatin regulator involved in the repression of some biosynthetic gene clusters through H3K4 trimethylation, allowed overproduction of three families of terpenoids and isolation of 12 different molecules. These natural products were tested in combination with methyl jasmonate, an elicitor of jasmonate responses, for their capacity to alter defence gene induction in Arabidopsis. Higginsianin B inhibited methyl jasmonate-triggered expression of the defence reporter VSP1p:GUS, suggesting it may block bioactive jasmonoyl isoleucine (JA-Ile) synthesis or signalling in planta. Using the JA-Ile sensor Jas9-VENUS, we found that higginsianin B, but not three other structurally related molecules, suppressed JA-Ile signalling by preventing the degradation of JAZ proteins, the repressors of jasmonate responses. Higginsianin B likely blocks the 26S proteasome-dependent degradation of JAZ proteins because it inhibited chymotrypsin- and caspase-like protease activities. The inhibition of target degradation by higginsianin B also extended to auxin signalling, as higginsianin B treatment reduced auxin-dependent expression of DR5p:GUS. Overall, our data indicate that specific fungal secondary metabolites can act similarly to protein effectors to subvert plant immune and developmental responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Diterpenos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Colletotrichum , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas
14.
Mar Drugs ; 17(12)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801271

RESUMO

The fungi Chrysosporium lobatum TM-237-S5 was isolated from the sponge Acanthella cavernosa, collected from the mesophotic coral ecosystem of the Red Sea. The strain was cultivated on a potato dextrose agar (PDA) medium, coupling solid-state fermentation and solid-state extraction (SSF/SSE) with a neutral macroreticular polymeric adsorbent XAD Amberlite resin (AMBERLITE XAD1600N). The SSF/SSE lead to high chemodiversity and productivity compared to classical submerged cultivation. Ten phenalenone related compounds were isolated and fully characterized by one-dimensional and two-dimensional NMR and HRMS. Among them, four were found to be new compounds corresponding to isoconiolactone, (-)-peniciphenalenin F, (+)-8-hydroxyscleroderodin, and (+)-8-hydroxysclerodin. It is concluded that SSF/SSE is a powerful strategy, opening a new era for the exploitation of microbial secondary metabolites.


Assuntos
Chrysosporium/metabolismo , Fenalenos/isolamento & purificação , Poríferos/microbiologia , Animais , Meios de Cultura , Ecossistema , Fermentação , Oceano Índico , Fenalenos/química , Metabolismo Secundário
15.
Mar Drugs ; 17(10)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31575010

RESUMO

Chlorophenols (CPs) are environmental pollutants that are produced through various anthropogenic activities and introduced in the environment. Living organisms, including humans, are exposed to these toxic xenobiotics and suffer from adverse health effects. More specifically, 2,4-dichlorophenol (2,4-DCP) is released in high amounts in the environment and has been listed as a priority pollutant by the US Environmental Protection Agency. Bioremediation has been proposed as a sustainable alternative to conventional remediation methods for the detoxification of phenolic compounds. In this work, we studied the potential of fungal strains isolated as symbionts of marine invertebrates from the underexplored mesophotic coral ecosystems. Hence, the unspecific metabolic pathways of these fungal strains are being explored in the present study, using the powerful analytical capabilities of a UHPLC-HRMS/MS. The newly identified 2,4-DCP metabolites add significantly to the knowledge of the transformation of such pollutants by fungi, since such reports are scarce.


Assuntos
Organismos Aquáticos/microbiologia , Clorofenóis/metabolismo , Fungos/metabolismo , Invertebrados/microbiologia , Poluentes Químicos da Água/metabolismo , Animais , Antozoários/metabolismo , Biodegradação Ambiental , Ecossistema , Humanos , Redes e Vias Metabólicas/fisiologia , Fenóis/metabolismo , Simbiose/fisiologia , Xenobióticos/metabolismo
16.
Molecules ; 24(12)2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208056

RESUMO

The strain Streptomyces osmaniensis CA-244599 isolated from the Comoros islands was submitted to liquid-state fermentation coupled to in situ solid-phase extraction with amberlite XAD-16 resin. Elution of the trapped compounds on the resin beads by ethyl acetate afforded seven metabolites, osmanicin (1), streptazolin (2), streptazone C (3), streptazone B1 (4), streptenol C (5), nocardamine (6) and desmethylenylnocardamine (7). Osmanicin (1) is a newly reported unusual scaffold combining streptazolin (2) and streptazone C (3) through a Diels-Alder type reaction. Experimental evidence excluded the spontaneous formation of 1 from 2 and 3. The isolated compounds were evaluated for their ability to inhibit elastase using normal human diploid fibroblasts. Compound 1 exhibited the most potent activity with an IC50 of 3.7 µM.


Assuntos
Alcaloides/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Elastase Pancreática/antagonistas & inibidores , Policetídeos/farmacologia , Streptomyces/química , Alcaloides/biossíntese , Alcaloides/química , Alcaloides/isolamento & purificação , Vias Biossintéticas , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fermentação , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Policetídeos/química , Policetídeos/isolamento & purificação , Policetídeos/metabolismo , RNA Ribossômico 16S/genética , Streptomyces/classificação , Streptomyces/genética
17.
Mol Plant Pathol ; 20(6): 831-842, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30924614

RESUMO

The role of histone 3 lysine 4 (H3K4) methylation is poorly understood in plant pathogenic fungi. Here, we analysed the function of CclA, a subunit of the COMPASS complex mediating H3K4 methylation, in the brassica anthracnose pathogen Colletotrichum higginsianum. We show that CclA is required for full genome-wide H3K4 trimethylation. The deletion of cclA strongly reduced mycelial growth, asexual sporulation and spore germination but did not impair the morphogenesis of specialized infection structures (appressoria and biotrophic hyphae). Virulence of the ΔcclA mutant on plants was strongly attenuated, associated with a marked reduction in appressorial penetration ability on both plants and inert cellophane membranes. The secondary metabolite profile of the ΔcclA mutant was greatly enriched compared to that of the wild type, with three different families of terpenoid compounds being overproduced by the mutant, namely the colletochlorins, higginsianins and sclerosporide. These included five novel molecules that were produced exclusively by the ΔcclA mutant: colletorin D, colletorin D acid, higginsianin C, 13-epi-higginsianin C and sclerosporide. Taken together, our findings indicate that H3K4 trimethylation plays a critical role in regulating fungal growth, development, pathogenicity and secondary metabolism in C. higginsianum.


Assuntos
Colletotrichum/metabolismo , Colletotrichum/patogenicidade , Diterpenos/metabolismo , Histonas/metabolismo , Arabidopsis/microbiologia , Colletotrichum/genética , Metilação , Mutação/genética , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Virulência
18.
J Nat Prod ; 82(4): 813-822, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30776231

RESUMO

Colletotrichum higginsianum is the causal agent of crucifer anthracnose disease, responsible for important economic losses in Brassica crops. A mutant lacking the CclA subunit of the COMPASS complex was expected to undergo chromatin decondensation and the activation of cryptic secondary metabolite biosynthetic gene clusters. Liquid-state fermentation of the Δ cclA mutant coupled with in situ solid-phase extraction led to the production of three families of compounds, namely, colletorin and colletochlorin derivatives with two new representatives, colletorin D (1) and colletorin D acid (2), the diterpenoid α-pyrone higginsianin family with two new analogues, higginsianin C (3) and 13- epi-higginsianin C (4), and sclerosporide (5) coupling a sclerosporin moiety with dimethoxy inositol.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Colletotrichum/metabolismo , Deleção de Genes , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Líquida de Alta Pressão , Colletotrichum/genética , Genes Fúngicos , Espectroscopia de Prótons por Ressonância Magnética
19.
Molecules ; 24(24)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888204

RESUMO

The bioconversion of Withania somnifera extract by the fungus Beauveria bassiana leads to cysteine and glutathione derivatives of withaferin A at the C-6 position. The compounds were purified and fully characterized by 1D-NMR, 2D-NMR, and HRMS analysis. The glutathione derivative CR-777 was evaluated as a neuroprotective agent from damage caused by different neurotoxins mimicking molecular symptoms in Parkinson´s disease (PD), including 1-methyl-4-phenylpyridinium (MPP+), 6-hydroxydopamine (6-OHDA), and α-synuclein (α-Syn). CR-777, at nanomolar concentrations, protected dopaminergic and cortical neurons. In 6-OHDA-treated neurons, CR-777 increased cell survival and neurite network and decreased the expression of α-Syn. Using specific inhibitors of cell toxicity signaling pathways and specific staining experiments, the observed role of CR-777 seemed to involve the PI3K/mTOR pathway. CR-777 could be considered as a protective agent against a large panel of neuronal stressors and was engaged in further therapeutic development steps.


Assuntos
Beauveria/metabolismo , Glutationa/análogos & derivados , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Withania/metabolismo , Vitanolídeos/química , Vitanolídeos/farmacologia , Biotransformação , Cromatografia Líquida de Alta Pressão , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Fármacos Neuroprotetores/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Vitanolídeos/isolamento & purificação
20.
Mar Drugs ; 16(5)2018 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-29734790

RESUMO

Isolation of marine compounds from living invertebrates represents a major challenge for sustainable and environmentally friendly exploitation of marine bio-resources. To develop innovative technology to trap invertebrate compounds in the open sea, the proof of concept of a system combining external continuous circulation of water with XAD-amberlite solid-phase extraction was validated in an aquarium. In this work, we reported the elicitation of guanidine alkaloid production of Crambe crambe in the presence of Anemonia sulcata, both collected from the Mediterranean Sea. Besides the previously reported crambescidin 359 (1), and crambescidin acid (2), three new compounds were isolated; one carboxylated analog of 1 named crambescidin 401 (3), and two analogs of crambescin B, crambescin B 281 (4) and crambescin B 253 (5). Based on these results, a technology named Somartex® for “Self Operating MARine Trapping Extractor” was patented and built to transfer the concept from closed aquarium systems to open marine ecosystems.


Assuntos
Organismos Aquáticos/química , Invertebrados/química , Alcaloides/química , Animais , Biotecnologia/métodos , Crambe (Esponja)/química , Ecossistema , Guanidina/química , Mar Mediterrâneo , Pirimidinas/química , Compostos de Espiro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...